

MH-CET-2014 Subjects: Physics, Chemistry & Biology

Question Booklet Version

22

(Write this number on your Answer Sheet)

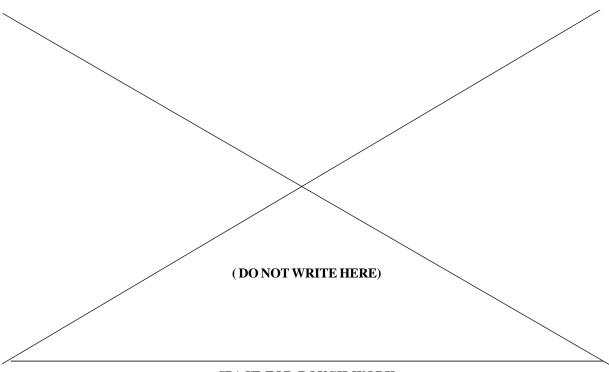
MH-CET-2014 Roll No.						
Answer Sheet No.						
Answer Sheet No.						

Question Booklet Sr. No.

(Write this number on your Answer Sheet)

Day and Date: Thursday, 08th May, 2014

Duration: 3.00 hours Total Marks: 720


This is to certify that, the entries of MH-CET Roll No. and Answer Sheet No. have been correctly written and verified.

Candidate's Signature

Invigilator's Signature

Instructions to Candidates

- 1. This question booklet contains 180 Objective Type Questions in the subjects of Physics (45), Chemistry (45) and Biology (90).
- 2. The question paper and OMR (Optical Mark Reader) Answer Sheet is issued separately at the start of the examination.
- 3. Choice and sequence for attempting questions will be as per the convenience of the candidate.
- 4. Candidate should carefully read the instructions printed on the Question Booklet and Answer Sheet and make the correct entries on the Answer Sheet. As Answer Sheets are designed to suit the OPTICAL MARK READER (OMR) SYSTEM, special care should be taken to mark the entries correctly. Special care should be taken to fill QUESTION BOOKLET VERSION, SERIAL No. and MH-CET Roll No. accurately. The correctness of entries has to be cross-checked by the invigilators. The candidate must sign on the Answer Sheet and Question Booklet.
- 5. Read each question carefully.
- 6. Select the correct answer from the four available options given for each question.
- 7. Mark the appropriate circle completely like this , for answering a particular question. Mark with Black ink ball point pen only.
- 8. Each question with correct response shall be awarded four (4) marks. There shall be negative marking. For wrong answers there will be deduction of one mark per question. One mark shall be deducted for marking two or more answers of same question, scratching or overwriting.
- 9. Use of whitener or any other material to erase/hide the circle once filled is not permitted.
- 10. Avoid overwriting and/or striking of answers once marked.
- 11. Rough work should be done only on the blank space provided on the Question Booklet. **Rough work should** not be done on the Answer Sheet.
- 12. The required Log-Antilog table will be provided along with the Question Booklet.
- 13. Immediately after the prescribed examination time is over, the Question Booklet and Answer sheet is to be returned to the Invigilator. Confirm that both the Candidate and Invigilator have signed on question booklet and answer sheet.
- 14. No candidate is allowed to leave the examination hall till the end of examination.
- 15. No marks will be deducted if a particular question is not attempted.

SPACE FOR ROUGH WORK

PHYSICS

1. The velocity of water in river is $9 \frac{\text{km}}{\text{hr}}$ of the upper surface. The river is 10 m deep. If the coefficient of viscosity of water is 10⁻² poise then the shearing stress between horizontal layers of water is

A)
$$0.25 \times 10^{-2} \frac{\text{N}}{\text{m}^2}$$

B)
$$0.25 \times 10^{-3} \frac{\text{N}}{\text{m}^2}$$

C)
$$0.5 \times 10^{-3} \frac{\text{N}}{\text{m}^2}$$

D)
$$0.75 \times 10^{-3} \frac{\text{N}}{\text{m}^2}$$

2. A sphere 'P' of mass 'm' moving with velocity 'u' collides head-on with another sphere 'Q' of mass 'm' which is at rest. The ratio of final velocity of 'Q' to initial velocity of 'P' is (e = coefficient of restitution)

A)
$$\frac{e-1}{2}$$

B)
$$\left\lceil \frac{e+1}{2} \right\rceil^{\frac{1}{2}}$$
 C) $\frac{e+1}{2}$ D) $\left\lceil \frac{e+1}{2} \right\rceil^2$

C)
$$\frac{e+1}{2}$$

D)
$$\left[\frac{e+1}{2}\right]^{\frac{1}{2}}$$

3. Magnetic induction produced at the centre of a circular loop carrying current is 'B'. The magnetic moment of the loop of radius 'R' is

 $(\mu_0 = \text{permeability of free space})$

A)
$$\frac{BR^3}{2\pi\mu_0}$$

B)
$$\frac{2\pi BR}{\mu_0}$$

C)
$$\frac{BR^2}{2\pi\mu_0}$$

B)
$$\frac{2\pi BR^3}{\mu_0}$$
 C) $\frac{BR^2}{2\pi\mu_0}$ D) $\frac{2\pi BR^2}{\mu_0}$

4. In air, a charged soap bubble of radius 'r' is in equilibrium having outside and inside pressures being equal. The charge on the drop is $(\in_0 = \text{permittivity of free space}, T = \text{surface tension})$ of soap solution)

A)
$$4\pi r^2 \sqrt{\frac{2T \epsilon_0}{r}}$$

B)
$$4\pi r^2 \sqrt{\frac{4T \epsilon_0}{r}}$$

C)
$$4\pi r^2 \sqrt{\frac{6T \in_0}{r}}$$

D)
$$4\pi r^2 \sqrt{\frac{8T \in_0}{r}}$$

- 5. A block is pushed momentarily on a horizontal surface with initial velocity 'v'. If '\mu' is the coefficient of sliding friction between the block and surface, the block will come to rest after time ('g' = acceleration due to gravity)
 - A) $\frac{v}{\mu g}$
- B) $\frac{vg}{\mu}$ C) $\frac{v\mu}{g}$ D) $\frac{\mu g}{v}$
- 6. The masses of three copper wires are in the ratio 1:3:5 and their lengths are in the ratio 5:3:1. The ratio of their resistance is
 - A) 25:1:125

B) 1:125:25

C) 125:1:25

- D) 125:25:1
- 7. A body of mass 'm' is raised to a height '10 R' from the surface of earth, where 'R' is the radius of earth. The increase in potential energy is (G = universal constant of gravitation,M = mass of earth and g = acceleration due to gravity)
 - A) $\frac{GMm}{11R}$
- B) $\frac{\text{GMm}}{10\text{R}}$ C) $\frac{\text{mgR}}{11\text{G}}$
- D) $\frac{10 \,\mathrm{GMm}}{11 \,\mathrm{R}}$
- 8. The angle θ between the vector $\vec{p} = \hat{i} + \hat{j} + \hat{k}$ and unit vector along x-axis is
 - A) $\cos^{-1}\left(\frac{1}{\sqrt{3}}\right)$ B) $\cos^{-1}\left(\frac{1}{\sqrt{2}}\right)$ C) $\cos^{-1}\left(\frac{\sqrt{3}}{2}\right)$ D) $\cos^{-1}\left(\frac{1}{2}\right)$

- 9. A small metal ball of mass 'm' is dropped in a liquid contained in a vessel, attains a terminal velocity 'v'. If a metal ball of same material but of mass '8m' is dropped in same liquid then the terminal velocity will be
 - A) V
- B) 2V
- C) 4V
- D) 8V

10.	A wooden block of	mass 8 kg slides d	lown an inclined pla	ne of inclination 30° to th	ıe
	horizontal with con	nstant acceleration	$n = 0.4 \text{ m/s}^2$. The for	ce of friction between th	ıe
	block and inclined	plane is $(g = 10)$	m/s^2)		
	A) 12.2 N	B) 24.4 N	C) 36.8 N	D) 48.8 N	
11.	In cyclotron, for a gir	ven magnet, radius	of the semicircle trac	eed by positive ion is directl	ly
	(v = velocity of posit)	ive ion)			

(v = velocity of positive ion)

A) v^{-2}	B) v^{-1}	C) v	D) v^2
,	,	,	,

12. A particle at rest is moved along a straight line by a machine giving constant power. The distance moved by the particle in time 't' is proportional to

A) $t^{\frac{1}{2}}$	B) $t^{\frac{2}{3}}$	C) t	D) $t^{\frac{3}{2}}$
11) t	D) (C) t	D) (

13. In insulators (C.B. is conduction band and V.B. is valence band)

- A) V.B. is partially filled with electrons
- B) C.B. is partially filled with electrons
- C) C.B. is empty and V.B. is filled with electrons
- D) C.B. is filled with electrons and V.B. is empty

14. An object of radius 'R' and mass 'M' is rolling horizontally without slipping with speed 'V'. It then rolls up the hill to a maximum height $h = \frac{3v^2}{4g}$. The moment of inertia of the object is (g = acceleration due to gravity)

A)
$$\frac{2}{5} MR^2$$
 B) $\frac{MR^2}{2}$ C) MR^2 D) $\frac{3}{2} MR^2$

- 15. In Wheatstone's bridge, three resistors P, Q, R are connected in three arms in order and 4th arm s is formed by two resistors s₁ and s₂ connected in parallel. The condition for bridge to be balanced is $\frac{P}{Q}$ =
 - A) $\frac{R(s_1 + s_2)}{s_1 s_2}$ B) $\frac{s_1 s_2}{R(s_1 + s_2)}$ C) $\frac{R s_1 s_2}{(s_1 + s_2)}$ D) $\frac{(s_1 + s_2)}{R s_1 s_2}$

- 16. The moment of inertia of a thin uniform rod rotating about the perpendicular axis passing through one end is 'I'. The same rod is bent into a ring and its moment of inertia about the diameter is ' I_1 '. The ratio $\frac{1}{I_1}$ is
- B) $\frac{8\pi^2}{3}$ C) $\frac{5\pi}{3}$
- D) $\frac{8\pi^2}{5}$
- 17. Three identical spheres each of mass 1 kg are placed touching one another with their centres in a straight line. Their centres are marked as A, B, C respectively. The distance of centre of mass of the system from A is

- A) $\frac{AB + AC}{2}$ B) $\frac{AB + BC}{2}$ C) $\frac{AC AB}{3}$ D) $\frac{AB + AC}{3}$
- 18. The relation between force 'F' and density 'd' is $F = \frac{x}{\sqrt{d}}$. The dimensions of x are
 - A) $\Pi^{-1/2} M^{3/2} T^{-2}$

B) $\left[L^{-\frac{1}{2}} M^{\frac{1}{2}} T^{-2}\right]$

C) $[L^{-1} M^{\frac{3}{2}} T^{-2}]$

- D) $[L^{-1} M^{\frac{1}{2}} T^{-2}]$
- 19. When a wave travels in a medium, displacement of a particle is given by $y = a \sin 2\pi$ (bt cx) where 'a', 'b', 'c' are constants. The maximum particle velocity will be twice the wave velocity if
 - A) b = ac
- B) $b = \frac{1}{ac}$
- C) $c = \pi a$ D) $c = \frac{1}{\pi a}$

- 20. Electromagnets are made of soft iron because soft iron has
 - A) high susceptibility and low retentivity
 - B) low susceptibility and high retentivity
 - C) low susceptibility and low retentivity
 - D) high susceptibility and high retentivity
- 21. If 'N' is the number of turns in a circular coil then the value of self inductance varies as
 - A) N^0
- B) N
- C) N^2
- D) N^{-2}
- 22. Surface density of charge on a sphere of radius 'R' in terms of electric intensity 'E' at a distance 'r' in free space is

 $(\in_0 = \text{permittivity of free space})$

- A) $\in_0 E\left(\frac{R}{r}\right)^2$ B) $\frac{\in_0 ER}{r^2}$ C) $\in_0 E\left(\frac{r}{R}\right)^2$ D) $\frac{\in_0 Er}{R^2}$

- 23. A body at rest starts sliding from top of a smooth inclined plane and requires 4 second to reach bottom. How much time does it take, starting from rest at top, to cover one-fourth of a distance?
 - A) 1 second
- B) 2 second
- C) 3 second
- D) 4 second
- 24. In vacuum, to travel distance 'd', light takes time 't' and in medium to travel distance '5d', it takes time 'T'. The critical angle of the medium is

- A) $\sin^{-1}\left(\frac{5T}{t}\right)$ B) $\sin^{-1}\left(\frac{5t}{3T}\right)$ C) $\sin^{-1}\left(\frac{5t}{T}\right)$ D) $\sin^{-1}\left(\frac{3t}{5T}\right)$
- 25. In electromagnetic spectrum, the frequencies of γ-rays, X-rays and ultraviolet rays are denoted by n₁, n₂ and n₃ respectively then

 - A) $n_1 > n_2 > n_3$ B) $n_1 < n_2 < n_3$ C) $n_1 > n_2 < n_3$ D) $n_1 < n_2 > n_3$

26. Two charges of equal magnitude 'q' are placed in air at a distance '2a' apart and third charge '-2q' is placed at midpoint. The potential energy of the system is $(\in_0 = \text{permittivity of free space})$

A) $-\frac{q^2}{8\pi \in_0 a}$ B) $-\frac{3q^2}{8\pi \in_0 a}$ C) $-\frac{5q^2}{8\pi \in_0 a}$ D) $-\frac{7q^2}{8\pi \in_0 a}$

27. An electron in potentiometer wire experiences a force 2.4×10^{-19} N. The length of potentiometer wire is 6m. The e.m.f. of the battery connected across the wire is (electronic charge = 1.6×10^{-19} C)

A) 6 V

B) 9 V

C) 12 V

D) 15 V

28. The dimensional formula for Reynold's number is

A) $[L^0 M^0 T^0]$

B) $[L^1 M^1 T^1]$

C) $[L^{-1} M^1 T^1]$

D) $[L^1 M^1 T^{-1}]$

29. Calculate angular velocity of earth so that acceleration due to gravity at 60° latitude becomes zero. (Radius of earth = 6400 km, gravitational acceleration at poles = $10 \, \text{m/}_{2}$, $\cos 60^{\circ} = 0.5$)

A) $7.8 \times 10^{-2} \text{ rad/s}$

B) $0.5 \times 10^{-3} \text{ rad/s}$

C) $1 \times 10^{-3} \text{ rad/s}$

D) $2.5 \times 10^{-3} \text{ rad/s}$

30. A stationary object explodes into masses m₁ and m₂. They move in opposite directions with velocities V_1 and V_2 . The ratio of kinetic energy E_1 to kinetic energy E_2 is

A) $\frac{m_2}{m_1}$

B) $\frac{m_1}{m_2}$ C) $\frac{2m_2}{m_1}$

31. In LCR series circuit, an alternating e.m.f. 'e' and current 'i' are given by the equations $e = 100 \sin (100 t) \text{ volt}$

 $i = 100 \sin \left(100 t + \frac{\pi}{3} \right) mA.$

The average power dissipated in the circuit will be

A) 100 W

B) 10 W

C) 5 W

D) 2.5 W

22

32.	A block resting on the horizontal surface executes S.H.M. in horizontal plane with amplitude
	'A'. The frequency of oscillation for which the block just starts to slip is (μ = coefficient of
	friction, g = gravitational acceleration)

A)
$$\frac{1}{2\pi}\sqrt{\frac{\mu g}{A}}$$

A)
$$\frac{1}{2\pi}\sqrt{\frac{\mu g}{A}}$$
 B) $\frac{1}{4\pi}\sqrt{\frac{\mu g}{A}}$ C) $2\pi\sqrt{\frac{A}{\mu g}}$ D) $4\pi\sqrt{\frac{A}{\mu g}}$

C)
$$2\pi \sqrt{\frac{A}{\mu g}}$$

D)
$$4\pi \sqrt{\frac{A}{\mu g}}$$

- 33. A plane sound wave travelling with velocity 'v' in a medium A reaches a point on the interface of medium A and medium B. If velocity of sound in medium B is 2v, the angle of incidence for total internal reflection of the wave will be greater than $(\sin 30^{\circ} = 0.5 \text{ and } \sin 90^{\circ} = 1)$
 - A) 15°
- B) 30°
- $C) 45^{\circ}$
- D) 90°
- 34. A gas is compressed isothermally. The r.m.s. velocity of its molecules
 - A) increases

- B) decreases
- C) first increases and then decreases
- D) remains the same
- 35. Two concentric spheres kept in air have radii 'R' and 'r'. They have similar charge and equal surface charge density " σ ". The electric potential at their common centre is

 $(\in_0 = \text{permittivity of free space})$

A)
$$\frac{\sigma(R+r)}{\epsilon_0}$$
 B) $\frac{\sigma(R-r)}{\epsilon_0}$ C) $\frac{\sigma(R+r)}{2\epsilon_0}$ D) $\frac{\sigma(R+r)}{4\epsilon_0}$

B)
$$\frac{\sigma(R-r)}{\epsilon_0}$$

C)
$$\frac{\sigma(R+r)}{2\epsilon_0}$$

D)
$$\frac{\sigma(R+r)}{4\epsilon_0}$$

- 36. If an electron in hydrogen atom jumps from an orbit of level n = 3 to an orbit of level n = 2, emitted radiation has a frequency (R = Rydberg's constant, C = velocity of light)
 - A) $\frac{3RC}{27}$
- B) $\frac{RC}{25}$ C) $\frac{8RC}{9}$
- D) $\frac{5RC}{36}$
- 37. In electromagnetic wave, according to Maxwell, changing electric field gives
 - A) stationary magnetic field
- B) conduction current

C) eddy current

- D) displacement current
- 38. The de-Broglie wavelength of an electron in 4^{th} orbit is $(r = radius of 1^{st} orbit)$
 - A) $2\pi r$
- B) $4\pi r$
- C) 8πr
- D) $16\pi r$

39. A string of length 'L' and force constant 'K' is stretched to obtain extension 'l'. It is further stretched to obtain extension l_1 . The work done in second stretching is

A) $\frac{1}{2} K l_1 (2l + l_1)$ B) $\frac{1}{2} K l_1^2$ C) $\frac{1}{2} K (l^2 + l_1^2)$ D) $\frac{1}{2} K (l_1^2 - l^2)$

40. The equiconvex lens has focal length 'f'. If it is cut perpendicular to the principal axis passing through optical centre, then focal length of each half is

A) $\frac{f}{2}$

B) f

C) $\frac{3f}{2}$

D) 2f

41. In common base circuit of a transistor, current amplification factor is 0.95. Calculate the emitter current if base current is 0.2 mA

A) 2 mA

B) 4 mA

C) 6 mA

D) 8 mA

42. The ratio of magnetic dipole moment of an electron of charge 'e' and mass 'm' in Bohr's orbit in hydrogen atom to its angular momentum is

A) $\frac{e}{m}$

B) $\frac{m}{e}$

C) $\frac{2m}{e}$

D) $\frac{e}{2m}$

43. Gases exert pressure on the walls of the container because the gas molecules

A) have finite volume

B) obey Boyle's law

C) possess momentum

D) collide with one another

44. Two coherent sources of intensity ratio ' α ' interfere. In interference pattern $\frac{I_{max} - I_{min}}{I_{max} + I_{min}} =$

A) $\frac{2\alpha}{1+\alpha}$ B) $\frac{2\sqrt{\alpha}}{1+\alpha}$ C) $\frac{2\alpha}{1+\sqrt{\alpha}}$ D) $\frac{1+\alpha}{2\alpha}$

45. Light of wavelength λ_A and λ_B falls on two identical metal plates A and B respectively. The maximum kinetic energy of photoelectrons in K_A and K_B respectively, then which one of the following relations is true ? $(\lambda_A = 2 \lambda_B)$

A) $K_A < \frac{K_B}{2}$ B) $2 K_A = K_B$ C) $K_A = 2 K_B$ D) $K_A > 2 K_B$

CHEMISTRY

46.
$$\langle A' \xrightarrow{KCN} 'B' \xrightarrow{H_3O^+} 'C' \xrightarrow{(i)Br_2/red P} 'D'$$

Identify the compound 'D' in above mentioned series of reactions.

- 47. Which among the following gases can be liquified easily?
 - A) Chlorine
- B) Nitrogen
- C) Oxygen
- D) Hydrogen
- 48. What is the mass of one molecule of yellow phosphorus? (Atomic mass, P = 30)
 - A) $1.993 \times 10^{-22} \text{ kg}$

B) $1.993 \times 10^{-19} \text{ mg}$

C) 4.983×10^{-20} mg

- D) $4.983 \times 10^{-23} \text{ kg}$
- 49. Ozone is present as a chief constituent in which region of the atmosphere?
 - A) Troposphere

B) Stratosphere

C) Mesosphere

- D) Thermosphere
- 50. The plot of square root of frequency of X-ray emitted against atomic number led to suggestion of which law/rule?
 - A) Periodic law

B) Modern periodic law

C) Hund's rule

- D) Newland's law
- 51. Benzene can be conveniently converted into n-propyl benzene by
 - A) Friedel Craft alkylation with n-propyl chloride
 - B) Friedel Craft acylation with propionyl chloride followed by Wolff Kishner reduction
 - C) Friedel Craft acylation with propionyl chloride followed by catalytic hydrogenation
 - D) Friedel Craft acylation with propionyl chloride followed by reduction with LiAlH₄

52. Select the diamagnetic complex ion amongst the following complexes

(Atomic No. Fe = 26, Co = 27)

A) $K_3[Fe(CN)_6]$

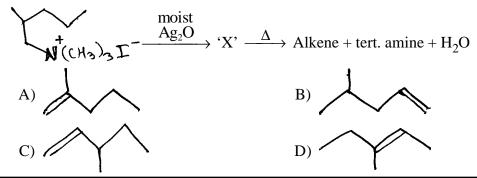
B) $[Co(NH_3)_6]Cl_3$

C) $K_3[FeF_6]$

- D) $K_3[CoF_6]$
- 53. One mole of stachyose on hydrolysis yields
 - A) 1 mole of glucose + 1 mole of fructose + 2 mole of galactose
 - B) 2 mole of glucose + 1 mole of fructose + 1 mole of galactose
 - C) 1 mole of glucose + 2 mole of fructose + 1 mole of galactose
 - D) 2 mole of glucose + 2 mole of fructose
- 54. An organic compound 'X' having molecular formula $C_4H_{11}N$ reacts with p-toluene sulphonyl chloride to form a compound 'Y' that is soluble in aqueous KOH. Compound 'X' is optically active and reacts with acetyl chloride to form compound 'Z'. Identify the compound 'Z'
 - A) CH₃CH₂CH₂CH₂NHCOCH₃
- CH₃
 B) CH₃CH₂CHNHCOCH₃
- CH₃
 C) CH₃CHCH₂NHCOCH₃
- CH₃
 D) CH₃ C NHCOCH₃
 CH₃
- 55. If average velocity of a sample of gas molecules at 300 K is 5 cm s⁻¹, what is RMS velocity of same sample of gas molecules at the same temperature? (Given, $\alpha : u : v = 1 : 1.224 : 1.127$)
 - A) 6.112 cm/s
- B) 4.605 cm/s
- C) 4.085 cm/s
- D) 5.430 cm/s

- 56. Which of the following complexes has lowest molar conductance?
 - A) CoCl₃.3NH₃

B) CoCl₃.4NH₃


C) CoCl₃.5NH₃

D) CoCl₃.6NH₃

- 57. The volume of oxygen evolved at STP, by decomposition of 0.68 g '20 volume' hydrogen peroxide solution, is
 - A) 2.24 mL
- B) 22.4 mL
- C) 224 mL
- D) 2240 mL
- 58. What is the molality of a solution containing 200 mg of urea (molar mass 60 g mol⁻¹) dissolved in 40 g of water?
 - A) 0.0825
- B) 0.825
- C) 0.498
- D) 0.0013
- 59. Alkaline hydrolysis of which among the following compounds leads to the formation of a racemate?
 - A) 1-Bromo-1-phenylethane
- B) 1-Chloro-3-methylbutane

C) Bromoethane

- D) 1-Chloropropane
- 60. The work done when two mole of an ideal gas is compressed from a volume of 5 m^3 to 1 dm^3 at 300 K, under a pressure of 100 kPa is
 - A) 499.9 kJ
- B) -499.9 kJ
- C) -99.5 kJ
- D) 42495 kJ
- 61. Identify the alkene that is produced in the following series of reactions

SPACE FOR ROUGH WORK

62. 'X' is an optically active alkane having lowest molecular mass. Predict the structure of the major product obtained on monochlorination of 'X'

A)
$$CH_3 - CH_2 - CH_2 - CH_3 - CH_2 - CH_3 - CH_3$$

B)
$$CH_3 - CH_2 - CH_2 - CH_3 - CH_3 - CH_3$$

 Cl
 CH_3

C)
$$CH_3 - CH_2 - CH_2 - CH_2 - CH_2 - CH_2 - CH_2$$

$$CH_3$$

D) $CI - CH_2 - CH_2 - CH_2 - CH_2 - CH_3$

- 63. Butylated hydroxy toluene is used in
 - A) preventing oxidative rancidity of fats
- B) preserving food grains
- C) killing bacteria in living tissues
- D) reducing stress and anxiety
- 64. Deficiency of which vitamin causes degeneration of spinal cord?
 - A) E

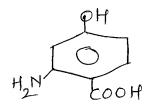
- B) K
- C) B₁₂
- D) A
- 65. Bond order of which among the following molecules is zero?
 - A) F₂
- B) O₂
- C) Be₂
- D) Li₂
- 66. What is the geometry of molecule of bromine penta fluoride?
 - A) square planar

B) trigonal bipyramidal

C) square pyramidal

D) octahedral

67. Identify the compound 'D' in the following series of reactions


$$CH_{3} - CH - CH_{2} - CH_{2} - Br \xrightarrow{alc \cdot KOH} A' \xrightarrow{(i) Conc. H_{2}SO_{4}} B' + C'$$

$$(Major \quad (Minor \quad product) \quad product)$$

'B'
$$\xrightarrow{\text{HI}, \Delta}$$
 'D' + 'E'

(Major product) (Minor product)

68. Write IUPAC name of following compound

- A) 2-Amino-4-hydroxybenzoic acid
- B) 6-Amino-4-hydroxybenzoic acid
- C) 3-Amino-4-carboxyphenol
- D) 2-Carboxy-5-hydroxyaniline
- 69. Which among the following metals is employed to provide cathodic protection to iron?
 - A) Zinc
- B) Nickel
- C) Tin
- D) Lead

SPACE FOR ROUGH WORK

70.	O. Oxidation number of nitrogen in which among the oxides of nitrogen is the lowest?				
	A) Nitric oxide	B) Nitrous oxide			
	C) Nitrogen dioxide	D) Nitrogen trioxide			
71.	The compound that yields only ketonic com	pound/s on ozonolysis	s is		
	A) But-2-ene	B) Pent-2-ene			
	C) 2, 3-Dimethylbut-2-ene	D) 2-Methylbut-2-er	ne		
72.	Which among the following metals is refine	d by electrolytic metho	od?		
	A) Aluminium B) Bismuth	C) Tin	D) Lead		
73.	The two monomers used in the preparation of	of dextron are			
	A) 3-hydroxy butanoic acid and 3-hydrox	y pentanoic acid			
	B) ∈ amino caproic acid and glycine				
	C) Isobutylene and isoprene				
	D) Lactic acid and glycolic acid				
74.	Which oxyacid of sulphur contains S-S sing	ale bond?			
	A) Oleum	B) Marshall's acid			
	C) Dithionic acid	D) Thiosulphuric aci	id		
75.	Amongst the followings, select the element	having highest ionizati	on enthalpy		
	A) Sodium B) Potassium	C) Beryllium	D) Magnesium		
76.	Select the ether among following that yield with cold hydroiodic acid	s methanol as one of t	he products on reaction		
	A) 1-Methoxybutane	B) 1-Methoxy-2-me	thylpropane		
	C) 2-Methoxy-2-methylpropane	D) Methoxybenzene			

SPACE FOR ROUGH WORK

//.	rate of reaction at a given temperature is 0.22 Ms^{-1} , when [A] = 1 M and [B] = 0.25 M .					
	A) $3.52 \text{ M}^{-2} \text{ s}^{-1}$		B) $0.88 \text{ M}^{-2} \text{ s}^{-1}$			
	C) $1.136 \text{ M}^{-2} \text{ s}^{-1}$		D) $0.05 \text{ M}^{-2} \text{ s}^{-1}$			
78.	Presence of nitrogen in Lassaigne method?	n which among the fo	ollowing compounds of	can NOT be detected by		
	A) Hydrazine	B) Aniline	C) p-Toluidine	D) Picric acid		
79.	agent. What is the num	-	• •	sing a suitable oxidising		
	A) 1.204×10^{22}	B) 193	C) 1930	D) 1.204×10^{21}		
80.	Among the following s	elect the alkane that	is expected to have lov	vest boiling point		
	A) Hexane		B) 2-Methylpentane			
	C) 3-Methylpentane		D) 2, 2-Dimethylbut	ane		
81.	1. Which statement is NOT correct about fullerene C ₆₀ ?					
	A) It contains 20 six	membered rings and	12 five membered ring	gs		
	B) All carbon atoms undergo SP ² hybridization					
	C) A six membered ring is fused with six membered rings only					
	D) A five membered	ring is fused with six	membered ring only			
82.	The product of molar	concentrations of hy	drogen ions and hydr	oxide ions in a 0.01 M		
	aqueous solution of soc	dium chloride is know	wn as			
	A) Hydrolysis consta	ent of salt	B) Dissociation cons	stant of acid		
	C) Dissociation cons	tant of base	D) Ionic product of v	water		

83. Select the coloured compound amongst the following : (Atomic no. Ti = 22, Cr = 24, Cu = 29, Zn = 30)

A) TiCl₄

B) CrCl₃

C) ZnCl₂

D) CuCl

84. Which among the following solids crystalises as a face centred cube?

A) Iron

B) Rubidium

C) Uranium

D) Platinum

85. What is the pH of millimolar solution of ammonium hydroxide which is 20% dissociated?

A) 3.699

B) 10.301

C) 4.691

D) 9.301

86. Which among the following group 16 elements exists in more than two allotropic states?

A) Polonium

B) Tellurium

C) Selenium

D) Oxygen

87. Solubility of which among the following substances in water increases slightly with rise in temperature?

A) Potassium bromide

B) Potassium chloride

C) Potassium nitrate

D) Sodium nitrate

88. Assuming enthalpy of combustion of hydrogen at 273 K, –286 kJ and enthalpy of fusion of ice at the same temperature to be + 6.0 kJ, calculate enthalpy change during formation of 100 g of ice

A) + 1622 kJ

B) -1622 kJ

C) +292 kJ

D) -292 kJ

89. How is electrical conductance of a conductor related with length and area of cross section of the conductor?

A) G = l a. k^{-1}

B) $G = k \cdot l \cdot a^{-1}$

C) $G = k. a. l^{-1}$

D) $G = k. l. a^{-2}$

90. What is the orbital angular momentum of an electron in 'f' orbital?

A) $\frac{1.5 h}{\pi}$

 $B) \ \frac{\sqrt{6}\,h}{\pi}$

C) $\frac{\sqrt{3} \text{ h}}{\pi}$

D) $\frac{\sqrt{3 \text{ h}}}{2\pi}$

BIOLOGY

91.	The inactive protoxin i	is activated in the gut	of the insect by	
	A) acidic pH		B) alkaline pH	
	C) low temperature		D) high temperature	e
92.	In angiosperms, the for divisions.	rmation of two male g	ametes from a pollen ş	grain involves
	A) one meiotic and o	ne mitotic	B) two meiotic and	two mitotic
	C) only two mitotic		D) only two meiotic	c
93.	In a plant cell the Diffu	ision Pressure Defici	t is zero when it is	
	A) plasmolysed	B) turgid	C) flaccid	D) incipient
94.	The life cycle of algae	such as Spirogyra is		
	A) haplontic		B) diplontic	
	C) haplo-diplontic		D) diplo-haplontic	
95.	During which stage of I	Prophase I, genetic rec	combination of parent	al characters, takes place?
	A) Zygotene	B) Pachytene	C) Diplotene	D) Diakinesis
96.	Gross primary product	ivity is the rate of pro	oduction of	during photosynthesis.
	A) organic matter		B) oxygen	
	C) carbon di-oxide		D) Chlorophyll	
97.	Flowers showing basin	petal succession are o	bserved in	
	A) Caesalpinia and G	Clerodendron	B) Jasmine and Go	ld mohar
	C) Gold mohar and (Caesalpinia	D) Clerodendron a	nd Jasmine
98.	The total number of tyr	oes of gametes produc	ced in a cross between	a negro and albino parent
, , ,	is			
	A) 64	B) 16	C) 08	D) 04
99.	Enzymes required for J	phosphorylation are l	ocated ino	f chloroplast.
	A) Peristromium	B) Plastidome	C) Stroma	D) Quantosome
100.	Afforestation is			
	A) restoring a forest		B) plantation in bar	rren lands
	C) cultivation under	agriculture	D) jhum cultivation	
101.	Animals obtain all thei	r carbon through		
	A) plants	B) soil	C) air	D) water

102.	which one of the follo	wing is NOT true abo	out monocotyledonae	!
	A) embryo has single	cotyledon		
	B) leaves show paral	lel venation		
	C) flowers are genera	ally trimerous		
	D) vascular bundles a	are conjoint, collatera	al and open	
103.	How many NAD mole	cules get reduced in	complete oxidation of	one glucose molecule?
	A) 2	B) 5	C) 10	D) 12
104.	Which one of the follow	wing is used in the pr	oduction of citric acid	1?
	A) Aspergillus niger		B) Rhizopus arrhizi	us
	C) Acetobacter aceti		D) Saccharomyces	cerevisiae
105.	What will be the number	er of histone molecule	es in a chromatin fibre	having 50 nucleosomes?
	A) 400	B) 450	C) 500	D) 1000
106.	In India, research in ge	netic modification of	organisms and safety	issues are controlled by
	A) DBT	B) IARI	C) CSIR	D) GEAC
107.	Guttation occurs through	gh		
	A) roots	B) hydathode	C) trichome	D) stomata
108.	A couple, both carriers know the chances of ha	_		to get married, wants to
	A) 100%	B) 75%	C) 50%	D) 25%
109.	A simple, living perma	ment tissue which is a	absent in roots is	
	A) Collenchyma	_	B) Chlorenchyma	
	C) Aerenchyma		D) Parenchyma	
110.	Which of the following	g show dimorphic chl	oroplast?	
	A) Mango	B) Castor	C) Banyan	D) Amaranthus
111.	In Albizzia, vegetative	propagation takes pla	ace with the help of	
	A) fasciculated tuber	ous roots	B) epiphyllous buds	S
	C) subaerial branches	S	D) nonfleshy roots	
112.	Which of the following	g cross will give reces	ssive progeny in F ₁ ge	neration ?
	A) $TT \times tt$	B) $Tt \times TT$	C) $tt \times tt$	D) $TT \times TT$

113.	. Select the correct statements from the following:			
	I. Endosperm is ge	enerally triploid in an	giosperms.	
	II. All angiosperms	s have monosporic an	nd endosporic embryo	sac.
	III. Angiosperms are	e characterised by do	uble-fertilization.	
	IV. All angiosperms	show-indirect pollin	ation and siphonogan	ıy.
	A) I, II and III	B) II, III and IV	C) I, III and IV	D) I, II, III and IV
114.	The structure produci	ing basidium in Basid	diomycetes is formed	by the fusion of
	A) two vegetative c	ells	B) two male game	etes
	C) two female game	etes	D) male and fema	le gametes
115.	The sequence of nucl	eotides AUGCUUC	UC indicates that it is	a segment of
	A) sense strand of l	DNA	B) anti sense strai	nd of DNA
	C) RNA		D) polypeptide ch	ain
116.	Multicostate diverger	nt reticulate venation	is seen in	leaf.
	A) Zizyphus	B) Bamboo	C) Castor	D) Mango
117.	Synthesis of one gluc	ose molecule require	es reduced l	NADP molecules.
	A) 6	B) 12	C) 18	D) 24
118.	The arrangement of v	ascular tissue in hadı	ocentric vascular bun	dle is
	A) concentric	B) radial	C) collateral	D) bicollateral
119.	'Cry' gene is obtained	d from		
	A) Agrobacterium		B) Bacillus thurin	giensis
	C) Rhizobium legun	minosarum	D) Rhizobium pho	useoli
120.	Identify the incorrect	match between the p	rotein and its role.	
	A) Keratin – structu			
	B) Immunoglobulii	ns – protection of boo	ly against diseases	
	C) Haemoglobin –	transport of O_2 in $m\iota$	iscles	
	D) Thrombin – bloc	od clotting		
121.	The largest collection	of herbarium in Indi	ais	
	A) Central National	l Herbarium, Kolkata	ı	
	B) Southern Circle	Herbarium, Coimbat	ore	
	C) Central Circle H	erbarium, Allahabad		
	D) Blatter Herbariu	m, Mumbai		

122.	Enzyme enolase catalyst of which		2 PG	A to phosphoenol	Pyruvic acid in presence
	A) Mn ⁺⁺	B) Fe ⁺⁺	C)	Mg^{++}	D) Zn ⁺⁺
123.	Excess of Manganese i	nhibits the translocat	tion o	of to th	ne shoot apex.
	A) Calcium	B) Potassium	C)	Iron	D) Magnesium
124.	 The correct sequence of A) Diakinesis → Pac B) Leptotene → Zyg C) Pachytene → Zyg 	chytene \rightarrow Diploten gotene \rightarrow Pachytene	$e \rightarrow e \rightarrow l$	Zygotene \rightarrow Lep Diplotene \rightarrow Dia	kinesis
	D) Leptotene \rightarrow Zyg				
125.	Capsule is a kind of				•
	A) simple, dry and de		B)	simple, dry and ir	ndehiscent
	C) an aggregate		D)	simple and fleshy	,
126.	In plant breeding, the ein a particular organism	-	nts/s	eeds having the di	verse alleles of all genes
	A) gene bank	B) cDNA library	C)	genomic library	D) germ plasm
127.	Acetylation of Pyruvat	e takes place in the _			
	A) perimitochondrial	space	B)	mitochondrial ma	trix
	C) cristae		D)	F ₁ particles	
128.	Cross pollination does				
	A) allogamous flowe			geitonogamous fl	
	C) cleistogamous flo	wers	D)	chasmogamous fl	owers
129.	Which one of the follow	_	icide	?	
	A) 2, 4-D	B) NAA	C)	IBA	D) IAA
130.	Senescense in plants le	ads into		cells.	
	A) increase in size			increase in numb	er
	C) death		D)	differentiation	
131.	Which one of the follow	wing is the first group	p of v	ascular plants?	
	A) Thallophyta			Bryophyta	
	C) Pteridophyta		D)	Spermatophyta	
132.		chromosomes in its	root	cells. What would	ther cells is crossed with be the ploidy of embryo
	A) 24 and 48	B) 24 and 24	C)	48 and 72	D) 24 and 36

133.	Which one of the followall A) parenchyma	wing has bast fibre B) sclerenchyma		n	D) xylem	
104					, •	
134.	In how many interlock			ranged in		
	A) 1	B) 2	C) 3		D) 4	
135.	What are the spindle f poles called?	ibres that connect t	the centromer	e of chron	nosome to the respective	Э
	A) Astral rays		B) Interpo	olar fibres		
	C) Chromosomal fib	res	D) Inter c	hromoson	nal fibres	
136.	Which of the following	g produces erythrop	ooietin?			
	A) Kidney	B) Pancreas	C) Pineal	gland	D) Thyroid gland	
137.	Identify the correct ma	atch from the Colun	nns I, II and II	I.		
	I	I	I		Ш	
	1. Interstitial cells	a. Cortex	of ovary	i. Folli	cular fluid	
	2. Sertoli cells	b. Ovaria	n follicle	ii. Prog	gesterone	
	3. Granulosa cells	c. Testis		iii. Atta	chment of sperm bundle	
	4. Cells of corpus lu	teum d. Semini	ferous tubules	iv. Test	osterone	
	A) 2-a-iii, 1-c-iv, 3-b	o-i, 4-d-ii	B) 1-c-iv,	2-d-iii, 3-	b-i, 4-a-ii	
	C) 1-d-iii, 2-a-iv, 3-b	o-i, 4-c-ii	D) 2-d-iii	, 1-c-iv, 3-	a-ii, 4-b-iv	
138.	Which of the following	g is correct match?				
	I		II		Ш	
	A) Thalassemia	a) XO		i) F	lat nose, simian crease	
	B) Down's syndrom	b) 42 A	A + XY	ii) V	Vebbing of neck	
	C) Turner's syndron	ne c) 44 A	A + XXX	iii) A	Anaemia, jaundice	
	D) Klinefelter's sync	d) 44 A	A + XXY	iv) T	all thin eunuchoid	
139.	Which is CORRECT 1	egarding genetical	ly engineered	insulin us	ing E. coli?	
	A) Difficult to purify	7				
	B) Obtained in large	unlimited quantitie	S			
	C) Possibility of tran	smission of animal	diseases			
	D) Insulin obtained varies in chemical structure					
	D) Insulin obtained v	aries in chemical si	iructure			
140.	D) Insulin obtained v Dobson unit is used in			el.		
140.		measurement of				
140.	Dobson unit is used in	measurement of	leve	s oxide	n	
	Dobson unit is used in A) Chlorofluoro carl	measurement ofoons	leve B) Nitrou	s oxide	n	
	Dobson unit is used in A) Chlorofluoro carl C) Ozone	measurement of pons g store proteins ?	leve B) Nitrou	s oxide B radiation	n D) Elaioplasts	

142. Pneumotaxic centre is located in	l		
A) Medulla oblongata	B)	Pons	
C) Cerebrum	D)	Diencephalon	
143. In case of a couple where a mar technique will be suitable for ferA) Infra uterine transfer		low sperm count,	which of the following
B) Gamete intra cytoplasmic fa	allopian transfer		
C) Artificial insemination			
D) Intra cytoplasmic sperm inju	ection		
144. The rise of 1 st primates occurred	d in 6	epoch.	
A) Palaeocene B) Olig	gocene C)	Miocene	D) Eocene
145. Which of the following statemen	nts correctly corr	elates with the diag	rams?
The state of the former state of the state o	100 0011 0011		5- W 1
a b	C	d	Post-reproductive Reproductive Pre-reproductive
A) a and b are steady population	on B)	a and d are declini	ng population
C) c and d are growing popula	ntion D)	b and d are declini	ng population
146. Cellular organization of body is	present in		
A) Annelida	В)	Platyhelminthes	
C) Porifera	D)	Urochordata	
147. In the following process of diges	stion, the enzym	es at location 'X' a	nd 'Y' are respectively
proteins \xrightarrow{X} proteoses and p	beptones \xrightarrow{Y}	Dipeptides	
A) Chymotrypsin and pepsin	B)	Pepsin and trypsin	ı
C) Ptyalin and pepsin	D)	Trypsin and di-per	otidase
148. Find out the correct match from	the following tal	ble:	
Column I	Column II	Colu	ımn III
i. Corpus luteum	Progesteron	Degeneration	of endometrium
ii. Pineal gland	Vasopressin	Intracellular t	ransport
iii. Pars nervosa	Coherin	Induces contr	action of jejunum
A) i only	B)	i and ii	
C) iii only	D)	ii and iii	

149.	The colostrum provides													
	A) Naturally acquired active immunity	B) Naturally acquired passive immunity												
	C) Artificially acquired active immunity	D) Artificially acquired passive immunity												
150.	Identify and select the correct Match in the	e Columns I, II and III.												
	I II	III												
	A) Earthworm – Annelida –	Superclass												
	B) Frog – Rana –	Species												
	C) Lancelet – Vertebrata –	Division												
	D) Walrus – Mammalia –	Class												
151.	The structure which prevents the entry of f	ood particles into the respiratory passage is												
	A) Epiglottis B) Glottis	C) Larynx D) Pharynx												
152.	Identify vertebrochondral ribs from the following	lowing:												
		B) 1 st to 7 th pairs of ribs												
	C) 8 th , 9 th and 10 th pairs of ribs	D) 11 th and 12 th pairs of ribs												
153.	"Testis are extraabdominal in position". W	hich of the following is most appropriate reason?												
	A) Narrow pelvis in male													
	B) Special protection for testis													
	C) Prostate gland and seminal vesicles of													
	D) $2.0-2.5^{\circ}$ C lower than the normal be	ody temperature												
154.	The Malignant malaria is caused by													
	A) Plasmodium vivax	B) Plasmodium malariae												
	C) Plasmodium ovale	D) Plasmodium falciparum												
155.	The total number of podomeres in each le	g of cockroach is												
	A) 5 B) 6	C) 7 D) 8												
156.	The correct match is													
	I. DCT – Secretion of H ⁺	and K ⁺ ions												
	II. Henle's loop – Reabsorption of	glucose, water and Na ⁺ ions												
	-	etal layer of Bowman's capsule												
	_	ar blood pressure activates it to release rennin												
	A) III B) II	C) I D) IV												
157.	The diurnal rhythms are regulated by													
	A) Adrenalin B) Melatonin	C) Serotonin D) Vasopressin												
158.	In DNA fingerprinting technique,	probe is used for hybridization of DNA												
	fragments.													
	A) D = -1-14 1 - 1 D N A	D) Double stronded non-modic active DNA												
	A) Double stranded RNAC) Single stranded radio active DNA	B) Double stranded non-radio active DNAD) Single stranded radio active RNA												

159.	Find	the Odd one out:											
	A)	Adamsia	B) Astraea	C)	Physalia	D)	Pleurobrachia						
160.	The	totipotent cell can i	form a										
	A)	Bud		B)	B) Cell membrane								
	C)	Cell organelle		D) Complete new organism									
161.	In co	ockroach, the comn	non duct of salivary	resei	voir opens at the b	ase	of the						
	A)	Pharynx	B) Maxilla	C)	Mandible	D)	Hypopharynx						
162.	The	wall of urinary blac	l of urinary bladder in humans show		hick layer of smoo	oth n	nuscle called						
	A)	Dartos	B) Detrusor	C)	Deltoid	D)	Depressor						
163.	Iden	ntify the correct mat	ch:										
		Accessory glands	,	Functions									
	i.	Seminal vesicles		a. Lubricates vagina									
	ii.	Prostate gland		b.	Provide energy, c	ulation of sperm							
		Cowper's gland			Neutralizes acidit	y of	vagina						
		i-b, ii-c, iii-a			i-c, ii-b, iii-a								
	ŕ	i-a, ii-c, iii-b			i-c, ii-a, iii-b								
164.		-	plock the passage of	-		_							
		Tubectomy			Vasectomy								
		Coitus interruptus		D)	Rhythm method								
165.	Find	I the incorrect match			***								
		I	II	т.,	III								
		Crab	Sacculina		raction ++								
		Human being Sea anemone	Mosquito Hermit crab		raction – + raction + 0								
		i only	B) ii and iii		iii and i	D)	ii only						
166		•	d in the lower left co	,		,	ii omy						
100.		SA node	B) AV node		AV bundle		Purkinje fibres						
167	,		•			D)	Turkinje Hores						
107.		ACTH, HCG, Ox	hormones initiate th	ie pai	runtion ?								
		ACTH, Corticoste	•										
			CTH, Prostaglandin										
		ACTH, Progestero	•										
168.	ĺ	primary lymphoid											
		Tonsils	- O	B)	Payer's patches								
		Lymph nodes			Thymus								
					•								

169.	Synapse is												
	A) Crossing over between non-homologous chromosomes												
	B) Pairing of homologous chromosomes												
	C) Junction between	en axon and dendrite	s of two different ne	eurons									
	D) Zig zag junctions in cardiac muscle fibres												
170.	Which of the followi	ng animal has enucle	eated erythrocytes?										
	A) Earthworm	B) Sepia	C) Frog	D) Rat									
171.	The salivary amylase	shows maximum di	gestive action at pH										
	A) 3.6	B) 6.8	C) 7.5	D) 8.5									
172.	The central hollow p	ortion of the vertebra	is called										
	A) Neural canal		B) Central cana	1									
	C) Auditory canal		D) Vertebro-art	erial canal									
173.	The depolarization o	f nerve membrane ta	kes place through in	flux ofions.									
	A) Calcium	B) Potassium	C) Sodium	D) Magnesium									
174.	Which of the follow wound healing?	ing is used to promo	ote growth of new b	lood vessels, thus helping in									
170. W 171. T 172. T 173. T 174. W W 175. S 176. T 177. T 178. T 179. C	A) HUMULIN		B) TPA										
	C) TGF – B		D) $\alpha - 1$ antitry	ypsin									
175.	Select the correct star	tement regarding the	Schwann cells										
		of myelinated nerve											
175.	B) Support muscle	fibres											
	C) Found in Haver	sian system of bones	}										
	D) Form basement	membrane of epithel	ium										
176.	The structural unit of	bone is											
	A) chondrin	B) cyton	C) osteon	D) ossein									
177.	The stato-acoustic re	ceptor responds to cl	nanges in the										
	A) Light and pressi		B) Pressure and										
	C) Pain and pressu	re	D) Sound and e	quilibrium									
178.	The chromosome with	th centromere near th	ne end is called										
	A) Acrocentric		B) Metacentric										
	C) Sub-metacentric		D) Telocentric										
171. T 172. T 173. T 174. W 175. S 176. T 177. T 178. T 179. C 180. C	One of the following	-											
	A) It can be adulter		B) It is cheaper	*									
	C) It burns more ef	ficiently	D) It reduces po	ollution									
180.	Oviparous mammal i	S											
	A) EquusC) Ornithorhynchu		B) MacropusD) Pteropus										

SPACE FOR ROUGH WORK

LOGARITHMS

	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
10	0000	0043	0086	0128	0170				<u> </u>		5	9	13	17	21	26	30	34	38
l i						0212	0253	0294	0334	0374	4	8	12	16	20	24	28	32	36
11	0414	0453	0492	0531	0569		†				4	8	12	16	20	23	27	31	35
						0607	0645	0682	0719	0755	4	7	11	15	18	22	26	29	33
12	0792	0828	0864	0899	0934						3	7	11	14	18	21	25	28	32
	İ					0969	1004	1038	1072	1106	3	7	10	14	17	20	24	27	31
13	1139	1173	1206	1239	1271						3	6	10	13	16	19	23	26	29
						1303	1335	1367	1399	1430	3	6	10	13	16	19	22	25	29
14	1461	1492	1523	1553	1584						3	6	9	12	15	19	22	25	28
						1614	1644	1673	1703	1732	3	6	9	12	14	17	20	23	26
15	1761	1790	1818	1847	1875						3	6	9	11	14	17	20	23	26
						1903	1931	1959	1987	2014	3	6	8	11	14	17	19	22	25
16	2041	2068	2095	2122	2148						3	6	8	11	14	16	19	22	24
						2175	2201	2227	2253	2279	3	5	8	10	13	16	18	21	23
17	2304	2330	2355	2380	2405						3	5	8	10	13	15	18	20	23
	<u> </u>	<u></u>		<u></u>		2430	2455	2480	2504	2529	3	5	8	10	12	15	17	20	22
18	2553	2577	2601	2625	2648						2	5	7	9	12	14	17	19	21
						2672	2695	2718	2742	2765	2	4	7	9	11	14	16	18	21
19	2788	2810	2833	2856	2878						2	4	7	9	11	13	16	18	20
						2900	2923	2945	2967	2989	2	4	6	8	11	13	15	17	19
20	3010	3032	3054	3075	3096	3118	3139	3160	3181	3201	2	4	6	8	11	13	15	17	19
21	3222	3243	3263	3284	3304	3324	3345	3365	3385	3404	2	4	6	8	10	12	14	16	18
22	3424	3444	3464	3483	3502	3522	3541	3560	3579	3598	2	4	6	8	10	12	14	15	17
23	3617	3636	3655	3674	3692	3711	3729	3747	3766	3784	2	4	6	7	9	11	13	15	17
24	3802	3820	3838	3856	3874	3892	3909	3927	3945	3962	2	4	5	7	9	11	12	14	16
25	3979	3997	4014	4031	4048	4065	4082	4099	4116	4133	2	3	5	7	9	10	12	14	15
26	4150	4166	4183	4200	4216	4232	4249	4265	4281	4298	2	3	5	7	8	10	11	14	15
27	4314	4330	4346	4362	4378	4393	4409	4425	4440	4456	2	3	5	6	8	9	11	13	14
28	4472	4487	4502	4518	4533	4548	4564	4579	4594	4609	2	3	5	6	8	9	11	12	14
29	4624	4639	4654	4669	4683	4698	4713	4728	4742	4757	1	3	4	6	7	9	10	12	13
30	4771	4786	4800	4814	4829	4843	4857	4871	4886	4900	1	3	4	6	7	9	10	11	13
31	4914	4928	4942	4955	4969	4983	4997	5011	5024	5038	1	3	4	6	7	8	10	11	12
32	5051	5065	5079	5092	5105	5119	5132	5145	5159	5172	1	3	4	5	7	8	9	11	12
33	5185	5198	5211	5224	5237	5250	5263	5276	5289	5302	1	3	4	5	6	8	9	10	12
34	5315	5328	5340	5353	5366	5378	5391	5403	5416	5428	1	3	4	5	6	8	9	10	11
35	5441	5453	5465	5478	5490	5502	5514	5527	5539	5551	1	2	4	5	6	7	9	10	11
36	5563	5575	5587	5599	5611	5623	5635	5647	5658	5670	1	2	4	5	6	7	8	10	11
37	5682	5694	5705	5717	5729	5740	5752	5763	5775	5786	1	2	3	5	6	7	8	9	10
38	5798	5809	5821	5832	5843	5855	5866	5877	5888	5899	1	2	3	5	6	7	8	9	10
39	5911	5922	5933	5944	5955	5966	5977	5988	5999	6010	1	2	3	4	5	7	8	9	10
40	6021	6031	6042	6053	6064	6075	6085	6096	6107	6117	1	2	3	4	5	6	8	9	10
41	6128	6138	6149	6160	6170	6180	6191	6201	6212	6222	1	2	3	4	5	6	7	8	9
42	6232	6243	6253	6263	6274	6284	6294	6304	6314	6325	1	2	3	4	5	6	7	8	9
43	6335	6345	6355	6365	6375	6385	6395	6405	6415	6425	1	2	3	4	5	6	7	8	9
44	6435	6444	6454	6464	6474	6484	6493	6503	6513	6522	1	2	3	4	5	6	7	8	9
45	6532	6542	6551	6561	6571	6580	6590	6599	6609	6618	1	2	3	4	5	6	7	8	9
46	6628	6637	6646	6656	6665	6675	6684	6693	6702	6712	1	2	3	4	5	6	7	7	8
47	6721	6730	6739	6749	6758	6767	6776	6785	6794	6803	1	2	3	4	5	5	6	7	8
48	6812	6821	6830	6839	6848	6857	6866	6875	6884	6893	1	2	3	4	4	5	6	7	8
49	6902	6911	6920	6928	6937	6946	6955	6964	6972	6981	1	2	3	4	4	5	6	7	8

LOGARITHMS

	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
50	6990	6998	7007	7016	7024	7033	7042	7050	7059	7067	1	2	3	3	4	5	6	7	8
51	7076	7084	7093	7101	7110	7118	7126	7135	7143	7152	1	2	3	3	4	5	6	7	8
52	7160	7168	7177	7185	7193	7202	7210	7218	7226	7235	1	2	2	3	4	5	6	7	7
53	7243	7251	7259	7267	7275	7284	7292	7300	7308	7316	1	2	2	3	4	5	6	6	7
54	7324	7332	7340	7348	7356	7364	7372	7380	7388	7396	1	2	2	3	4	5	6	6	7
55	7404	7412	7419	7427	7435	7443	7451	7459	7466	7474	1	2	2	3	4	5	5	6	7
56	7482	7490	7497	7505	7513	7520	7528	7536	7543	7551	1	2	2	3	4	5	5	6	7
57	7559	7566	7574	7582	7589	7597	7604	7612	7619	7627	1	2	2	3	4	5	5	6	7
58	7634	7642	7649	7657	7664	7672	7679	7686	7694	7701	1	1	2	3	4	4	5	6	7
59	7709	7716	7723	7731	7738	7745	7752	7760	7767	7774	1	1	2	3	4	4	5	6	7
60	7782	7789	7796	7803	7810	7818	7825	7832	7839	7846	1	1	2	3	4	4	5	6	6
61	7853	7860	7868	7875	7882	7889	7896	7903	7910	7917	1	1	2	3	4	4	5	6	6
62	7924	7931	7938	7945	7952	7959	7966	7973	7980	7987	1	1	2	3	3	4	5	6	6
63	7993	8000	8007	8014	8021	8028	8035	8041	8048	8055	1	1	2	3	3	4	5	5	6
64	8062	8069	8075	8082	8089	8096	8102	8109	8116	8122	1	1	2	3	3	4	5	5	6
65	8129	8136	8142	8149	8156	8162	8169	8176	8182	8189	1	1	2	3	3	4	5	5	6
66	8195	8202	8209	8215	8222	8228	8235	8241	8248	8254	1	1	2	3	3	4	5	5	6
67	8261	8267	8274	8280	8287	8293	8299	8306	8312	8319	1	1	2	3	3	4	5	5	6
68	8325	8331	8338	8344	8351	8357	8363	8370	8376	8382	1	1	2	3	3	4	4	5	6
69	8388	8395	8401	8407	8414	8420	8426	8432	8439	8445	1	1	2	2	3	4	4	5	6
70	8451	8457	8463	8470	8476	8482	8488	8494	8500	8506	1	1	2	2	3	4	4	5	6
71	8513	8519	8525	8531	8537	8543	8549	8555	8561	8567	1	1	2	2	3	4	4	5	5
72	8573	8579	8585	8591	8597	8603	8609	8615	8621	8627	1	1	2	2	3	4	4	5	5
73	8633	8639	8645	8651	8657	8663	8669	8675	8681	8686	1	1	2	2	3	4	4	5	5
74	8692	8698	8704	8710	8716	8722	8727	8733	8739	8745	1	1	2	2	3	4	4	5	5
75	8751	8756	8762	8768	8774	8779	8785	8791	8797	8802	1	1	2	2	3	3	4	5	5
76	8808	8814	8820	8825	8831	8837	8842	8848	8854	8859	1	1	2	2	3	3	4	5	5
77	8865	8871	8876	8882	8887	8893	8899	8904	8910	8915	1	1	2	2	3	3	4	4	5
78	8921	8927	8932	8938	8943	8949	8954	8960	8965	8971	1	1	2	2	3	3	4	4	5
79	8976	8982	8987	8993	8998	9004	9009	9015	9020	9025	1	1	2	2	3	3	4	4	5
80	9031	9036	9042	9047	9053	9058	9063	9069	9074	9079	1	1	2	2	3	3	4	4	5
81	9085	9090	9096	9101	9106	9112	9117	9122	9128	9133	1	1	2	2	3	3	4	4	5
82	9138	9143	9149	9154	9159	9165	9170	9175	9180	9186	1	1	2	2	3	3	4	4	5
83	9191	9196	9201	9206	9212	9217	9222	9227	9232	9238	1	1	2	2	3	3	4	4	5
84	9243	9248	9253	9258	9263	9269	9274	9279	9284	9289	1	1	2	2	3	3	4	4	5
85	9294	9299	9304	9309	9315	9320	9325	9330	9335	9340	1	1	2	2	3	3	4	4	5
86	9345	9350	9355	9360	9365	9370	9375	9380	9385	9390	1	1	2	2	3	3	4	4	5
87	9395	9400	9405	9410	9415	9420	9425	9430	9435	9440	0	1	1	2	2	3	3	4	4
88	9445	9450	9455	9460	9465	9469	9474	9479	9484	9489	0	1	1	2	2	3	3	4	4
89	9494	9499	9504	9509	9513	9518	9523	9528	9533	9538	0	1	1	2	2	3	3	4	4
90	9542	9547	9552	9557	9562	9566	9571	9576	9581	9586	0	1	1	2	2	3	3	4	4
91	9590	9595	9600	9605	9609	9614	9619	9624	9628	9633	0	1	1	2	2	3	3	4	4
92	9638	9643	9647	9652	9657	9661	9666	9671	9675	9680	0	1	1	2	2	3	3	4	4
93	9685	9689	9694	9699	9703	9708	9713	9717	9722	9727	0	1	1	2	2	3	3	4	4
94	9731	9736	9741	9745	9750	9754	9759	9763	9768	9773	0	1	1	2	2	3	3	4	4
95	9777	9782	9786	9791	9795	9800	9805	9809	9814	9818	0	1	1	2	2	3	3	4	4
96	9823	9827	9832	9836	9841	9845	9850	9854	9859	9863	0	1	1	2	2	3	3	4	4
97	9868	9872	9877	9881	9886	9890	9894	9899	9903	9908	0	1	1	2	2	3	3	4	4
98	9912	9917	9921	9926	9930	9934	9939	9943	9948	9952	0	1	1	2	2	3	3	4	4
99	9956	9961	9965	9969	9974	9978	9983	9987	9991	9996	0	1	1	2	2	3	3	3	4

ANTILOGARITHMS

0.00	1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 3 3 2 2 3 3 2 2 3 3 2 3 3 3 2 3 3 3 3 3 3 3
0.02	1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 3 2 2 3 3 2 2 3 3 2 2 3 3 2 2 3 3 2 3 3 3
0.03	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
0.04 1096 1099 1102 1104 1107 1109 1112 1114 1117 1119 0	2
0.05	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 3 2 2 2 3 2 2 2 3 2 2 3 3 2 2 3 3 2 2 3 3 2 2 3 3 2 3 3 3
0.06	2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 3 3 2 2 2 3 3 2 2 2 3 3 2 2 2 3 3 2 2 2 3 3 2 2 2 3 3 3 2 2 2 3 3 3 2 2 3 3 3 2 2 3 3 3 2 2 3 3 3 3 2 2 3 3 3 3 3
0.07	2
0.08	2 2 2 3 3 2 2 2 3 3 2 2 3 3 2 2 3 3 2 2 3 3 2 2 3 3 2 2 3 3 3 2 2 3 3 3 2 3 3 3 3
1230	2 2 2 3 3 2 2 3 3 2 2 3 3 2 2 3 3 2 2 3 3 2 2 3 3 2 2 3 3 2 2 3 3 3 2 2 3 3 3 2 3 3 3 3
0.10 1259 1262 1265 1268 1271 1274 1276 1279 1282 1285 0 1 1 1 1 0.11 1288 1291 1294 1297 1300 1303 1306 1309 1312 1315 0 1 1 1 2 0.12 1318 1321 1324 1327 1330 1334 1337 1340 1343 1346 0 1 1 1 2 0.13 1349 1352 1355 1358 1361 1365 1368 1371 1374 1377 0 1 1 2 0.14 1380 1384 1387 1390 1393 1396 1400 1403 1406 1409 0 1 1 1 2 0.15 1413 1416 1419 1422 1426 1429 1432 1433 1440 0 1 1 <th>2 2 2 3 3 2 2 3 3 3 2 2 3 3 3 2 2 3 3 3 2 2 3 3 3 2 2 3 3 3 2 3 3 3 3</th>	2 2 2 3 3 2 2 3 3 3 2 2 3 3 3 2 2 3 3 3 2 2 3 3 3 2 2 3 3 3 2 3 3 3 3
0.11 1288 1291 1294 1297 1300 1303 1306 1309 1312 1315 0 1 1 2 0.12 1318 1321 1324 1327 1330 1334 1337 1340 1343 1346 0 1 1 1 2 0.13 1349 1352 1355 1358 1361 1365 1368 1371 1374 1377 0 1 1 1 2 0.14 1380 1384 1387 1390 1393 1396 1400 1403 1406 1409 0 1 1 1 2 0.15 1413 1416 1419 1422 1426 1429 1432 1433 1442 0 1 1 1 2 0.16 1445 1449 1452 1455 1459 1493 1496 1500 1503 1507 1510 0 1	2 2 2 3 3 2 2 3 3 3 2 2 3 3 3 2 2 3 3 3 2 2 3 3 3 2 2 3 3 3 2 2 3 3 3 3 2 3 3 3
0.12 1318 1321 1324 1327 1330 1334 1337 1340 1343 1346 0 1 1 1 2 0.13 1349 1352 1355 1358 1361 1365 1368 1371 1374 1377 0 1 1 1 2 0.14 1380 1384 1387 1390 1393 1396 1400 1403 1406 1409 0 1 1 1 2 0.15 1413 1416 1419 1422 1426 1429 1432 1435 1439 1442 0 1 1 1 2 0.16 1445 1449 1452 1455 1459 1462 1466 1469 1472 1476 0 1 1 2 0.17 1479 1483 1486 1489 1493 1496 1500 1503 1507 1510 0 1	2 2 2 3 3 2 2 3 3 2 2 3 3 3 2 2 3 3 3 2 2 3 3 3 2 2 3 3 3 3 3
0.13 1349 1352 1355 1358 1361 1365 1368 1371 1374 1377 0 1 1 1 2 0.14 1380 1384 1387 1390 1393 1396 1400 1403 1406 1409 0 1 1 1 2 0.15 1413 1416 1419 1422 1426 1429 1432 1435 1439 1442 0 1 1 1 2 0.16 1445 1449 1452 1455 1459 1462 1466 1469 1472 1476 0 1 1 1 2 0.17 1479 1483 1486 1489 1493 1496 1500 1503 1507 1510 0 1 1 2 0.18 1514 1517 1521 1524 1528 1531 1535 1538 1542 1545 0 1	2 2 3 3 3 2 2 3 3 3 2 2 3 3 3 2 2 3 3 3 2 2 3 3 3 3 3
0.14 1380 1384 1387 1390 1393 1396 1400 1403 1406 1409 0 1 1 1 2 0.15 1413 1416 1419 1422 1426 1429 1432 1435 1439 1442 0 1 1 1 2 0.16 1445 1449 1452 1455 1459 1462 1466 1469 1472 1476 0 1 1 1 2 0.17 1479 1483 1486 1489 1493 1496 1500 1503 1507 1510 0 1 1 2 0.18 1514 1517 1521 1524 1528 1531 1535 1538 1542 1545 0 1 1 2 0.19 1549 1552 1566 1560 1563 1567 1570 1574 1578 1581 0 1 1	2 2 3 3 3 2 2 3 3 3 2 2 3 3 3 2 2 3 3 3 3 3
0.15 1413 1416 1419 1422 1426 1429 1432 1435 1439 1442 0 1 1 1 2 0.16 1445 1449 1452 1455 1459 1462 1466 1469 1472 1476 0 1 1 1 2 0.17 1479 1483 1486 1489 1493 1496 1500 1503 1507 1510 0 1 1 1 2 0.18 1514 1517 1521 1524 1528 1531 1535 1538 1542 1545 0 1 1 1 2 0.19 1549 1552 1556 1560 1563 1567 1570 1574 1578 1581 0 1 1 2 0.20 1585 1589 1592 1596 1600 1603 1607 1611 1614 1614 1614 <t< th=""><th>2 2 3 3 2 3 3 3</th></t<>	2 2 3 3 2 3 3 3
0.15 1413 1416 1419 1422 1426 1429 1432 1435 1439 1442 0 1 1 1 2 0.16 1445 1449 1452 1455 1459 1462 1466 1469 1472 1476 0 1 1 1 2 0.17 1479 1483 1486 1489 1493 1496 1500 1503 1507 1510 0 1 1 2 0.18 1514 1517 1521 1524 1528 1531 1535 1538 1542 1545 0 1 1 2 0.19 1549 1552 1556 1560 1563 1567 1570 1574 1578 1581 0 1 1 2 0.20 1585 1589 1592 1596 1600 1603 1607 1611 1614 1614 1614 1614 1614	2 2 3 3 2 3 3 3
0.16 1445 1449 1452 1455 1459 1462 1466 1469 1472 1476 0 1 1 1 2 0.17 1479 1483 1486 1489 1493 1496 1500 1503 1507 1510 0 1 1 1 2 0.18 1514 1517 1521 1524 1528 1531 1535 1538 1542 1545 0 1 1 1 2 0.19 1549 1552 1556 1560 1563 1567 1570 1574 1578 1581 0 1 1 2 0.20 1585 1589 1592 1596 1600 1603 1607 1611 1614 1618 0 1 1 2 0.21 1622 1626 1629 1633 1637 1641 1644 1648 1652 1656 0 1 1	2 2 3 3 2 2 3 3 2 2 3 3 2 3 3 3
0.17 1479 1483 1486 1489 1493 1496 1500 1503 1507 1510 0 1 1 1 2 0.18 1514 1517 1521 1524 1528 1531 1535 1538 1542 1545 0 1 1 1 2 0.19 1549 1552 1556 1560 1563 1567 1570 1574 1578 1581 0 1 1 1 2 0.20 1585 1589 1592 1596 1600 1603 1607 1611 1614 1618 0 1 1 2 0.21 1622 1626 1629 1633 1637 1641 1644 1648 1652 1656 0 1 1 2 2 0.22 1660 1663 1667 1671 1675 1679 1683 1687 1690 1694 0 1	2 2 3 3 2 2 3 3 2 3 3 3
0.18 1514 1517 1521 1524 1528 1531 1535 1538 1542 1545 0 1 1 1 2 0.19 1549 1552 1556 1560 1563 1567 1570 1574 1578 1581 0 1 1 1 2 0.20 1585 1589 1592 1596 1600 1603 1607 1611 1614 1618 0 1 1 1 2 0.21 1622 1626 1629 1633 1637 1641 1644 1648 1652 1656 0 1 1 2 2 0.22 1660 1663 1667 1671 1675 1679 1683 1687 1690 1694 0 1 1 2 2 0.23 1698 1702 1706 1710 1714 1718 1722 1726 1730 1734 0	2 2 3 3 2 3 3 3
0.19 1549 1552 1556 1560 1563 1567 1570 1574 1578 1581 0 1 1 1 2 0.20 1585 1589 1592 1596 1600 1603 1607 1611 1614 1618 0 1 1 1 2 0.21 1622 1626 1629 1633 1637 1641 1644 1648 1652 1656 0 1 1 2 2 0.22 1660 1663 1667 1671 1675 1679 1683 1687 1690 1694 0 1 1 2 2 0.23 1698 1702 1706 1710 1714 1718 1722 1726 1730 1734 0 1 1 2 2 0.24 1738 1742 1746 1750 1754 1758 1762 1766 1770 1774 0	2 3 3 3
0.20 1585 1589 1592 1596 1600 1603 1607 1611 1614 1618 0 1 1 2 0.21 1622 1626 1629 1633 1637 1641 1644 1648 1652 1656 0 1 1 2 2 0.22 1660 1663 1667 1671 1675 1679 1683 1687 1690 1694 0 1 1 2 2 0.23 1698 1702 1706 1710 1714 1718 1722 1726 1730 1734 0 1 1 2 2 0.24 1738 1742 1746 1750 1754 1758 1762 1766 1770 1774 0 1 1 2 2 0.25 1778 1782 1786 1791 1795 1799 1803 1807 1811 1816 0 1	1
0.21 1622 1626 1629 1633 1637 1641 1644 1648 1652 1656 0 1 1 2 2 0.22 1660 1663 1667 1671 1675 1679 1683 1687 1690 1694 0 1 1 2 2 0.23 1698 1702 1706 1710 1714 1718 1722 1726 1730 1734 0 1 1 2 2 0.24 1738 1742 1746 1750 1754 1758 1762 1766 1770 1774 0 1 1 2 2 0.25 1778 1782 1786 1791 1795 1799 1803 1807 1811 1816 0 1 1 2 2 0.26 1820 1824 1828 1832 1837 1841 1845 1849 1854 1858 0	_
0.22 1660 1663 1667 1671 1675 1679 1683 1687 1690 1694 0 1 1 2 2 0.23 1698 1702 1706 1710 1714 1718 1722 1726 1730 1734 0 1 1 2 2 0.24 1738 1742 1746 1750 1754 1758 1762 1766 1770 1774 0 1 1 2 2 0.25 1778 1782 1786 1791 1795 1799 1803 1807 1811 1816 0 1 1 2 2 0.26 1820 1824 1828 1832 1837 1841 1845 1849 1854 1858 0 1 1 2 2 0.27 1862 1866 1871 1875 1879 1884 1888 1897 1901 0 1 <th>2 3 3 3</th>	2 3 3 3
0.23 1698 1702 1706 1710 1714 1718 1722 1726 1730 1734 0 1 1 2 2 0.24 1738 1742 1746 1750 1754 1758 1762 1766 1770 1774 0 1 1 2 2 0.25 1778 1782 1786 1791 1795 1799 1803 1807 1811 1816 0 1 1 2 2 0.26 1820 1824 1828 1832 1837 1841 1845 1849 1854 1858 0 1 1 2 2 0.27 1862 1866 1871 1875 1879 1884 1888 1892 1897 1901 0 1 1 2 2 0.28 1905 1910 1914 1919 1923 1928 1932 1936 1941 1945 0	2 3 3 3
0.24 1738 1742 1746 1750 1754 1758 1762 1766 1770 1774 0 1 1 2 2 0.25 1778 1782 1786 1791 1795 1799 1803 1807 1811 1816 0 1 1 2 2 0.26 1820 1824 1828 1832 1837 1841 1845 1849 1854 1858 0 1 1 2 2 0.27 1862 1866 1871 1875 1879 1884 1888 1892 1897 1901 0 1 1 2 2 0.28 1905 1910 1914 1919 1923 1928 1932 1936 1941 1945 0 1 1 2 2 0.29 1950 1954 1959 1963 1968 1972 1977 1982 1986 1991 0	2 3 3 4
0.25 1778 1782 1786 1791 1795 1799 1803 1807 1811 1816 0 1 1 2 2 0.26 1820 1824 1828 1832 1837 1841 1845 1849 1854 1858 0 1 1 2 2 0.27 1862 1866 1871 1875 1879 1884 1888 1892 1897 1901 0 1 1 2 2 0.28 1905 1910 1914 1919 1923 1928 1932 1936 1941 1945 0 1 1 2 2 0.29 1950 1954 1959 1963 1968 1972 1977 1982 1986 1991 0 1 1 2 2 0.30 1995 2000 2004 2009 2014 2018 2023 2028 2032 2037 0	2 3 3 4
0.26 1820 1824 1828 1832 1837 1841 1845 1849 1854 1858 0 1 1 2 2 0.27 1862 1866 1871 1875 1879 1884 1888 1892 1897 1901 0 1 1 2 2 0.28 1905 1910 1914 1919 1923 1928 1932 1936 1941 1945 0 1 1 2 2 0.29 1950 1954 1959 1963 1968 1972 1977 1982 1986 1991 0 1 1 2 2 0.30 1995 2000 2004 2009 2014 2018 2023 2028 2032 2037 0 1 1 2 2	2 3 3 4
0.27 1862 1866 1871 1875 1879 1884 1888 1892 1897 1901 0 1 1 2 2 0.28 1905 1910 1914 1919 1923 1928 1932 1936 1941 1945 0 1 1 2 2 0.29 1950 1954 1959 1963 1968 1972 1977 1982 1986 1991 0 1 1 2 2 0.30 1995 2000 2004 2009 2014 2018 2023 2028 2032 2037 0 1 1 2 2	3 3 3 4
0.28 1905 1910 1914 1919 1923 1928 1932 1936 1941 1945 0 1 1 2 2 0.29 1950 1954 1959 1963 1968 1972 1977 1982 1986 1991 0 1 1 2 2 0.30 1995 2000 2004 2009 2014 2018 2023 2028 2032 2037 0 1 1 2 2	3 3 3 4
0.29 1950 1954 1959 1963 1968 1972 1977 1982 1986 1991 0 1 1 2 2 0.30 1995 2000 2004 2009 2014 2018 2023 2028 2032 2037 0 1 1 2 2	3 3 4 4
0.30 1995 2000 2004 2009 2014 2018 2023 2028 2032 2037 0 1 1 2 2	3 3 4 4
	3 3 4 4
200 2	3 3 4 4
 0.32 2089 2094 2099 2104 2109 2113 2118 2123 2128 2133 0 1 1 2 2	3 3 4 4
0.33 2138 2143 2148 2153 2158 2163 2168 2173 2178 2183 0 1 1 2 2	3 3 4 4
0.34 2188 2193 2198 2203 2208 2213 2218 2223 2228 2234 1	3 4 4 5
0.35 2239 2244 2249 2254 2259 2265 2270 2275 2280 2286 1	3 4 4 5
0.36 2291 2296 2301 2307 2312 2317 2323 2328 2333 2339 1	3 4 4 5
0.37 2344 2350 2355 2360 2366 2371 2377 2382 2388 2393 1	3 4 4 5
0.38 2399 2404 2410 2415 2421 2427 2432 2438 2443 2449 1	3 4 4 5
0.39 2455 2460 2466 2472 2477 2483 2489 2495 2500 2506 1 1 2 2 3	3 4 5 5
0.40 2512 2518 2523 2529 2535 2541 2547 2553 2559 2564 1	4 4 5 5
	4 4 5 5
	4 4 5 6
	4 4 5 6
	4 4 5 6
	4 5 5 6
	4 5 5 6
	4 5 5 6
	4 5 6 6
	4 5 6 6

ANTILOGARITHMS

		0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9	
0.	50	3162	3170	3177	3184	3192	3199	3206	3214	3221	3228	1	1	2	3	4	4	5	6	7	
0.	51	3236	3243	3251	3258	3266	3273	3281	3289	3296	3304	1	2	2	3	4	5	5	6	7	
0.	52	3311	3319	3327	3334	3342	3350	3357	3365	3373	3381	1	2	2	3	4	5	5	6	7	ı
0.4	53	3388	3396	3404	3412	3420	3428	3436	3443	3451	3459	1	2	2	3	4	5	6	6	7	
0.4	54	3467	3475	3483	3491	3499	3508	3516	3524	3532	3540	1	2	2	3	4	5	6	6	7	
0.4	55	3548	3556	3565	3573	3581	3589	3597	3606	3614	3622	1	2	2	3	4	5	6	7	7	
0.5	56	3631	3639	3648	3656	3664	3673	3681	3690	3698	3707	1	2	3	3	4	5	6	7	8	
0.8	57	3715	3724	3733	3741	3750	3758	3767	3776	3784	3793	1	2	3	3	4	5	6	7	8	
0.6	58	3802	3811	3819	3828	3837	3846	3855	3864	3873	3882	1	2	3	4	4	5	6	7	8	
0.5	59	3890	3899	3908	3917	3926	3936	3945	3954	3963	3972	1	2	3	4	5	5	6	7	8	1
0.6	30	3981	3990	3999	4009	4018	4027	4036	4046	4055	4064	1	2	3	4	5	6	6	7	8	
0.6	31	4074	4083	4093	4102	4111	4121	4130	4140	4150	4159	1	2	3	4	5	6	7	8	9	
0.6	32	4169	4178	4188	4198	4207	4217	4227	4236	4246	4256	1	2	3	4	5	6	7	8	9	1
0.6	33	4266	4276	4285	4295	4305	4315	4325	4335	4345	4355	1	2	3	4	5	6	7	8	9	-
0.6	64	4365	4375	4385	4396	4406	4416	4426	4436	4446	4457	1	2	3	4	5	6	7	8	9	
0.6	35	4467	4477	4487	4498	4508	4519	4529	4539	4550	4560	1	2	3	4	5	6	7	8	9	
0.6	6	4571	4581	4592	4603	4613	4624	4634	4645	4656	4667	1	2	3	4	5	6	7	9	10	
0.6	57	4677	4688	4699	4710	4721	4732	4742	4753	4764	4775	1	2	3	4	5	7	8	9	10	
0.6	88	4786	4797	4808	4819	4831	4842	4853	4864	4875	4887	1	2	3	4	6	7	8	9	10	ł
0.6	9	4898	4909	4920	4932	4943	4955	4966	4977	4989	5000	1	2	3	5	6	7	8	9	10	
0.7	0	5012	5023	5035	5047	5058	5070	5082	5093	5105	5117	1	2	4	5	6	7	8	9	11	
0.7	′1	5129	5140	5152	5164	5176	5188	5200	5212	5224	5236	1	2	4	5	6	7	8	10	11	1
0.7	2	5248	5260	5272	5284	5297	5309	5321	5333	5346	5348	1	2	4	5	6	7	9	10	11	
0.7	'3	5370	5383	5395	5408	5420	5433	5445	5458	5470	5483	1	3	4	5	6	8	9	10	11	
0.7	4	5495	5508	5521	5534	5546	5559	5572	5585	5598	5610	1	3	4	5	6	8	9	10	12	
0.7	5	5623	5636	5649	5662	5675	5689	5702	5715	5728	5741	1	3	4	5	7	8	9	10	12	
0.7	6	5754	5768	5781	5794	5808	5821	5834	5848	5861	5875	1	3	4	5	7	8	9	11	12	
0.7	7	5888	5902	5916	5929	5943	5957	5970	5984	5998	6012	1	3	4	5	7	8	10	11	12	
0.7	8	6026	6039	6053	6067	6081	6095	6109	6124	6138	6152	1	3	4	6	7	8	10	11	13	١
0.7	9	6166	6180	6194	6209	6223	6237	6252	6266	6281	6295	1	3	4	6	7	8	10	11	13	l
0.8	0	6310	6324	6339	6353	6368	6383	6397	6412	6427	6442	1	3	4	6	7	9	10	12	13	l
0.8	1	6457	6471	6486	6501	6516	6531	6546	6561	6577	6592	2	3	5	6	8	9	11	12	14	
0.8	2	6607	6622	6637	6653	6668	6683	6699	6714	6730	6745	2	3	5	6	8	9	11	12	14	
0.8	3	6761	6776	6792	6808	6823	6839	6855	6871	6887	6902	2	3	5	6	8	9	11	13	14	
0.8	4	6918	6934	6950	6966	6982	6998	7015	7031	7047	7063	2	3	5	6	8	10	11	13	15	
0.8	5	7079	7096	7112	7129	7145	7161	7178	7194	7211	7228	2	3	5	7	8	10	12	13	15	
0.8	6	7244	7261	7278	7295	7311	7328	7345	7362	7379	7396	2	3	5	7	8	10	12	13	15	
0.8	7	7413	7430	7447	7464	7482	7499	7516	7534	7551	7568	2	3	5	7	9	10	12	14	16	
0.8	8	7586	7603	7621	7638	7656	7674	7691	7709	7727	7745	2	4	5	7	8	11	12	14	16	
0.8	9	7762	7780	7798	7816	7834	7852	7870	7889	7907	7925	2	4	5	7	9	11	13	14	16	
0.9	0	7943	7962	7980	7998	8017	8035	8054	8072	8091	8110	2	4	6	7	9	11	13	15	17	
0.9	1	8128	8147	8166	8185	8204	8222	8241	8260	8279	8299	2	4	6	8	9	11	13	15	17	
0.9	2	8318	8337	8356	8375	8395	8414	8433	8453	8472	8492	2	4	6	8	10	12	14	15	17	
0.9	3	8511	8531	8551	8570	8590	8610	8630	8650	8670	8690	2	4	6	8	10	12	14	16	18	
0.9	4	8710	8730	8750	8770	8790	8810	8831	8851	8872	8892	2	4	6	8	10	12	14	16	18	
0.9	5	8913	8933	8954	8974	8995	9016	9036	9057	9078	9099	2	4	6	8	10	12	15	17	19	
0.9	6	9120	9141	9162	9183	9204	9220	9247	9268	9290	9311	2	4	6	8	11	13	15	17	19	
0.9	7	9333	9354	9376	9397	9419	9441	9462	9484	9506	9528	2	4	7	9	11	13	15	17	20	
0.9	8	9550	9572	9594	9616	9638	9661	9683	9705	9727	9750	2	4	7	9	11	13	16	18	20	
0.9	9	9772	9795	9817	9840	9863	9886	9908	9931	9954	9977	2	5	7	9	11	14	16	18	20	